Deep Learning

Belum tahu apa itu Deep Learning? Ketahui semua informasi tentang Deep Learning hanya di Kamus IT Techbuddy, mulai dari definisi, pengertian, fungsi, dan lain sebagainya

Oleh: Rendy Andriyanto
Deep Learning

Deep Learning. Gambar dibuat oleh Bing AI Image Creator

Definisi Deep Learning

Menurut pakar AI, Profesor Yoshua Bengio, Deep Learning adalah “sebuah pendekatan terhadap AI yang berfokus pada membangun model yang belajar representasi data.” Jadi, Deep Learning menggunakan algoritma dan metode yang mampu menafsirkan jenis data seperti teks, suara, atau gambar.

Pakar lain, Dr. Andrew Ng, mendefinisikan Deep Learning sebagai “pelatihan neural networks yang sangat besar”. Dengan kata lain, Deep Learning berfungsi untuk mempelajari dan memahami data dalam jumlah besar dan mendalam.

Pengertian Deep Learning

Deep Learning adalah salah satu cabang dari bidang kecerdasan buatan (Artificial Intelligence – AI) yang menggunakan metode dan algoritma jaringan syaraf tiruan berlapis (Neural Networks) untuk meniru cara kerja otak manusia dalam pengambilan keputusan dan pembelajaran.

Deep Learning juga sangat terkait dengan konsep Big Data dan Cloud Computing. Big Data menyediakan jumlah data yang cukup untuk dilatih oleh algoritma Deep Learning, sementara Cloud Computing memberikan daya komputasi yang dibutuhkan untuk proses pelatihan tersebut.

Cara Kerja Deep Learning

Secara teknis, Deep Learning bekerja dengan menerima input data melalui lapisan input. Data ini kemudian diproses melalui beberapa lapisan tersembunyi, dimana setiap lapisan memiliki fungsi aktivasi yang mengubah data menjadi output yang lebih berguna. 

Misalnya, dalam pengenalan suara, suara yang masuk akan diproses melalui berbagai lapisan neural networks untuk menghasilkan teks yang mewakili suara tersebut.

Tipe-Tipe Deep Learning

Ada beberapa tipe Deep Learning, antara lain:

  1. Convolutional Neural Networks (CNNs): Biasanya digunakan dalam pengenalan pola dalam gambar.
  2. Recurrent Neural Networks (RNNs): Bermanfaat dalam pengenalan pola waktu, seperti pemrosesan bahasa alami dan prediksi deret waktu.
  3. Generative Adversarial Networks (GANs): Digunakan untuk menghasilkan data baru yang mirip dengan data yang sudah ada sebelumnya.

Sejarah dan Perkembangan Deep Learning

Sejarah Deep Learning bermula pada tahun 1943 saat Warren McCulloch dan Walter Pitts memperkenalkan konsep neuron buatan. 

Namun, perkembangan signifikan terjadi pada tahun 1986, saat peneliti Geoffrey Hinton dan rekan-rekannya memperkenalkan algoritma Backpropagation. Ini memberikan kemampuan bagi neural networks untuk belajar dari kesalahan dan melakukan penyesuaian.

Lalu, pada tahun 2012, tim Alex Krizhevsky memenangkan kompetisi ImageNet menggunakan CNN, yang menandakan era baru dalam penggunaan Deep Learning.

Kabar Terkait

Kamus IT -

DNS (Domain Name System)

Belum tahu apa itu DNS (Domain Name System)? Ketahui semua informasi tentang DNS (Domain Name System) hanya di Kamus IT Techbuddy, mulai dari definisi, pengertian, fungsi, dan lain sebagainya

Mengenal Apa itu DNS
Kamus IT -

Domain

Belum tahu apa itu Domain? Ketahui semua informasi tentang Domain hanya di Kamus IT Techbuddy, mulai dari definisi, pengertian, fungsi, dan lain sebagainya

Mengenal Apa itu Domain
Kamus IT -

Deep Web

Belum tahu apa itu Deep Web? Ketahui semua informasi tentang Deep Web hanya di Kamus IT Techbuddy, mulai dari definisi, pengertian, fungsi, dan lain sebagainya

Mengenal Apa itu Deep Web
Kamus IT -

Database

Belum tahu apa itu Database? Ketahui semua informasi tentang Database hanya di Kamus IT Techbuddy, mulai dari definisi, pengertian, fungsi, dan lain sebagainya

Memahami Definisi Database
Kamus IT -

Data Science

Belum tahu apa itu Data Science? Ketahui semua informasi tentang Data Science hanya di Kamus IT Techbuddy, mulai dari definisi, pengertian, fungsi, dan lain sebagainya

Memahami Definisi Data Science